programme general

Pour que ce programme marche parfaitement, vous devez installer MAPLE 8 dans votre machine
Programme général : restart;
fn:=(mean,sd1,D)->exp(-0.5*((D-mean)/sd1)**2)/(sd1*sqrt(2*Pi)):
Fn:=(mean,sd1,Q)->int(fn(mean,sd1,D),D=0..Q):
F:=(alpha1,beta1,gamma1,D)->piecewise(D<=alpha1,0, D<=beta1,((D-alpha1)**2)/((gamma1-alpha1)*(beta1-alpha1)), D<=gamma1,1-((gamma1-D)**2)/((gamma1-alpha1)*(gamma1-beta1)),1):
ff22:=(alpha,beta,gamma1,k)->gamma1-((alpha)*k*(beta)-(gamma1)*k*(alpha)-(gamma1)*k*(beta)+k*(gamma1)^2)^(1/2):
ff1:=(alpha,beta,gamma1,k)->alpha+((alpha)^2-(alpha)*(beta)-k*(beta)*(gamma1)+(beta)*(gamma1)-(gamma1)*(alpha)-k*(alpha)^2+k*(gamma1)*(alpha)+k*(alpha)*(beta))^(1/2):
auto:=(alpha1,beta1,gamma1,k)->piecewise(k<=1-F(alpha1,beta1,gamma1,gamma1),gamma1,k<=1-F(alpha1,beta1,gamma1,beta1),ff22(alpha1,beta1,gamma1,k),k<=1-F(alpha1,beta1,gamma1,alpha1),ff1(alpha1,beta1,gamma1,k)+((-ff1(alpha1,beta1,gamma1,1-F(alpha1,beta1,gamma1,beta1))+ff22(alpha1,beta1,gamma1,1-F(alpha1,beta1,gamma1,beta1)))),alpha1+ff1(alpha1,beta1,gamma1,1)-ff1(alpha1,beta1,gamma1,F(alpha1,beta1,gamma1,beta1))+ff22(alpha1,beta1,gamma1,F(alpha1,beta1,gamma1,beta1))):
f1:=(alpha1,beta1,gamma1,x)->(2/(gamma1-alpha1))*piecewise(x= gamma1,0):
with(plots):
with(plots):
with(Maplets[Elements]):
maplet := Maplet('onstartup' = 'A1',
Window['W1']('title' = "DETERMINATION DU PROFIT DE LA QUANTITE OPTIMALE ET DU COUT", 'layout' = 'BL0'),
BoxLayout['BL0']('background'= 'yellow',
BoxColumn('background' = 'yellow',
BoxRow('background' = 'yellow',"CHOIX POUR EFFECTUER UNE SIMULATION AVEC UNE LOI TRIANGULAIRE"),
BoxRow('background' = 'yellow',
Button("EVALUATION DU PROFIT",'background' = 'white','font' = Font("helvetica", italic, 12), Action(RunWindow('W2'),
CloseWindow('W1'))),
Button("EVAUATION DE LA QUANTITE OPTIMALE",'background' = 'white','font' = Font("helvetica", italic, 12),Action(RunWindow('W3'))),
Button("EVAUATION DU COUT",'background' = 'white','font' = Font("helvetica", italic, 12) ,Action(RunWindow('W4')))
),
BoxRow('background' = 'yellow',
"CHOIX POUR EFFECTUER UNE SIMULATION AVEC UNE LOI NORMALE"),
BoxRow('background' = 'yellow',
Button("EVALUATION DU PROFIT ",'background' = 'white', 'font' = Font("helvetica", italic, 12),Action(RunWindow('W5'),
CloseWindow('W1'))),
Button("EVAUATION DE LA QUANTITE OPTIMALE",'background' = 'white','font' = Font("helvetica", italic, 12),
Action(RunWindow('W6'))),
Button("EVAUATION DU COUT",'font' = Font("helvetica", italic, 12),'background' = 'white', Action(RunWindow('W7')))
)),
Button("TO LEAVE", Shutdown(['mean11']),'background' = 'cyan','font' = Font("helvetica", italic, 14))
),
Window['W2']('title'="LE PROFIT AVEC LA LOI TRIANGULAIRE",
[[ "D.mean", TextField['mean11']('width' = 5,halign=center),
["alpha1: ", Slider['alpha11'](0..100, 15,filled=true, 'showticks', 'majorticks'=50, 'minorticks'=10,'snapticks'=false )],
["beta1: ", Slider['beta11'](0..100,50,filled=true,'showticks', 'majorticks'=50, 'minorticks'=10, 'snapticks'=false)],
["gamma1: ", Slider['gamma11'](0..100, 100, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false)], "unitcost:", TextField['c']('width' = 5,"5", halign=center),"unit price:", TextField['p']('width' = 5,"15",halign=center)
],
Plotter['PL11']( plot(undefined, Q = 1..300) ),
[ Button("PLOT PROFIT",'font' = Font("helvetica", italic, 9), Evaluate ('PL11'='
plot({p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11,Q))-c*Q,
int((p*D-c*valmin)*f1(alpha11,beta11,gamma11,D),D=0..valmin)+int((p*valmin-c*valmin)*f1(alpha11 ,beta11,gamma11,D),D=valmin..infinity),
p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11,Q))-c*Q
+sqrt( int(((p*D-c*Q)-(p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11, Q))-c*Q))**2*f1(alpha11,beta11,gamma11,D),D=0..Q)+
int(((p*Q-c*Q)-(p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11, Q))-c*Q))**2*f1(alpha11,beta11,gamma11,D),D=Q..infinity)
),
p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11,Q))-c*Q-sqrt(
int(((p*D-c*Q)-(p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11,Q) )-c*Q))**2*f1(alpha11,beta11,gamma11,D),D=0..Q)+
int(((p*Q-c*Q)-(p*int(D*f1(alpha11,beta11,gamma11,D),D=0..Q)+p*Q*(1-F(alpha11,beta11,gamma11,Q) )-c*Q))**2*f1(alpha11,beta11,gamma11,D),D=Q..infinity)
)},Q = 0..200,color=[blue,orange,red])')),
Button("det.sd1",'font' = Font("helvetica", italic, 10), Evaluate('TF11' ='evalf(sqrt(int((x- (int(x*f1(alpha11,beta11,gamma11,x),x=-infinity..infinity)))**2*f1(alpha11,beta11,gamma11,x), x=-infinity..infinity)))')),
Button("det.Q*",'font' = Font("helvetica", italic, 10), Evaluate('TF11' ='evalf(solve(int(f1 (alpha11,beta11,gamma11,x),x=-2000..Q)=1-c/p,Q))'))
,"erreur:", TextField['TF22']('width' = 15,halign=center),
[TextField['TF11']('width' = 5,halign=center)],
Button(
"Profit",'font' = Font("helvetica", italic, 10), Evaluate('TF22'='
evalf(abs((
int((p*D-c*valmin)*f1(alpha11,beta11,gamma11,D),D=0..TF11)+int((p*valmin-c*valmin)*f1(alpha11 ,beta11,gamma11,D),D=TF11..infinity))))')),
Button("DENSITY FUNC.",'font' = Font("helvetica", italic, 8), Evaluate('PL11' = '
display(
plot([(alpha11+beta11+gamma11)/3,D,D=0..0.03],color=green),
plot({f1(alpha11,beta11,gamma11,D)},D=alpha11..gamma11))'))]
,["Order Q: ", Slider['valmin'](0..100, 30, 'showticks' ,filled=true,'majorticks'=100, 'minorticks'=10, 'snapticks'=false),
Button("mean",'font' = Font("helvetica", italic, 10), Evaluate('mean11'='evalf((alpha11+ beta11+gamma11)/3)'))
,Button("TO LEAVE", Shutdown(['alpha11']),'background' = 'white','font' = Font("helvetica", italic, 10)),"", Button(
"det.%erreur",'font' = Font("helvetica", italic, 10), Evaluate('TF22'='100*
evalf(abs((
int((p*D-c*valmin)*f1(alpha11,beta11,gamma11,D),D=0..valmin)+int((p*valmin-c*valmin)* f1(alpha11,beta11,gamma11,D),D=valmin..infinity)-(int((p*D-c*TF11)*f1(alpha11,beta11, gamma11,D),D=0..TF11)+int((p*TF11-c*TF11)*f1(alpha11,beta11,gamma11,D),D=TF11..infinity)))) /(int((p*D-c*TF11)*f1(alpha11,beta11,gamma11,D),D=0..TF11)+int((p*TF11-c*TF11)*f1(alpha11,beta 11,gamma11,D),D=TF11..infinity)))'))]]),
#----------------------------------------------------------------------------------------------- Window['W3']('title'="LA QUANTITE OPTIMALE AVEC LA LOI TRIANGULAIRE", [
["D.mean1", TextField['mean12']('width' = 5,halign=center),
"alpha1: ", Slider['alpha12'](0..100, 30, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"beta1: ", Slider['beta12'](0..100, 50, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"gamma1:", Slider['gamma12'](0..100, 75, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false)]
, ["D.mean2", TextField['mean22']('width' = 5,halign=center),"alpha2: ", Slider['alpha22'] (0..100, 0, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"beta2: ", Slider['beta22'](0..100, 50, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"gamma2:", Slider['gamma22'](0..100, 100, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false)],
[Plotter['PL12'](),Plotter['PL22'](width='5') ],
[ Button("TO TEST",'font' = Font("helvetica", italic, 9), Evaluate('PL12' ='display({
plot(auto(alpha22,beta22,gamma22,k),k=0..1,color=blue),
plot(auto(alpha12,beta12,gamma12,k),k=0..1,color=red),
plot(auto(alpha12,beta12,gamma12,k1),k=0..1,color=black,style=point),
plot(auto(alpha22,beta22,gamma22,k1),k=0..1,color=black,style=point),
plot([k1,Q,Q=alpha22..100],color=black,style=point)})')),
Button("TO LEAVE", Shutdown(['mean12']),'font' = Font("helvetica", italic, 9)),
"RESULT=", TextField['TF112']('width' = 5,halign=center),
"Q optimal", TextField['TF222']('width' = 2,5,halign=center),
Button("DENSITY FUNC.",'font' = Font("helvetica", italic, 9), Evaluate('PL22' = 'display(plot({(f1(alpha12,beta12,gamma12,x)),(f1(alpha22,beta22,gamma22,x))},x=min(alpha 12,alpha22)..max(gamma12,gamma22),color=[blue,red],style=[line,point], symbol=circle),
plot([(alpha12+beta12+gamma12)/3,D,D=0..0.06],color=blue),
plot([(alpha22+beta22+gamma22)/3,D,D=0..0.05],color=red))
'))],
[Button("mean1",'font' = Font("helvetica", italic, 9), Evaluate('mean12' = 'evalf((alpha12+beta12+gamma12)/3)')),
Button("mean2",'font' = Font("helvetica", italic, 9), Evaluate('mean22' = 'evalf((alpha22+beta22+gamma22)/3)')), Button("Sd1:=",'font' = Font("helvetica", italic, 11), Evaluate('TF112' = ' evalf(sqrt(int((x-int(x*f1(alpha12,beta12,gamma12,x),x=-infinity..infinity))**2* (f1(alpha12,beta12,gamma12,x)),x=-infinity..infinity)))')),
Button("Sd2:=",'font' = Font("helvetica", italic, 9), Evaluate('TF112' = '
evalf(sqrt(int((x-int(x*f1(alpha22,beta22,gamma22,x),x=-infinity..infinity))**2*(f1(alpha22,beta22,gamma22,x)),x=-infinity..infinity)))')),
"k", TextField['k1']('width' = 5,"0.35",halign=center),
Button("Q1",'font' = Font("helvetica", italic, 9), Evaluate('TF222' = 'evalf(auto(alpha12,beta12,gamma12,k1))')),
Button("Q2",'font' = Font("helvetica", italic, 9), Evaluate('TF222' = 'evalf(auto(alpha22,beta22,gamma22,k1))')),
Button("DeltaQ",'font' = Font("helvetica", italic, 9), Evaluate('TF222' = '100*evalf((auto(alpha12,beta12,gamma12,k1)-auto(alpha22,beta22,gamma22,k1))/ (auto(alpha22,beta22,gamma22,k1)))')),
Button("Q*",'font' = Font("helvetica", italic, 9), Evaluate('TF222'='evalf( solve(F(alpha12,beta12,gamma12,D)-F(alpha22,beta22,gamma22,D)=0,D)[2])')),
Button("det. K",'font' = Font("helvetica", italic, 11), Evaluate('TF112' = ' evalf(1-int(f1(alpha22,beta22,gamma22,x),x=-infinity..TF222))'))]]) ,
#----------------------------------------------------------------------------------------------- Window['W4']('title'="LE COUT AVEC LA LOI TRIANGULAIRE", [
[
"alpha1: ", Slider['alpha13'](0..100, 15, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"beta1: ", Slider['beta13'](0..100, 50, 'showticks',filled=true, 'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
"gamma1: ", Slider['gamma13'](0..100, 80, 'showticks',filled=true,'majorticks'=50, 'minorticks'=10, 'snapticks'=false)],
["Demand mean", TextField['mean3'](),"Unitcost", TextField['Ca']("5"),
"break-up cost:", TextField['Cr']("34",halign=center),"storage cost:", TextField['Cs'] ("27",halign=center)],
Plotter['PL13']( plot(undefined, Q = 1..320) ),
[Button("PLOT COST",'font' = Font("helvetica", italic, 9), Evaluate('PL13'='plot ({Cs*int((Q-D)*f1(alpha13,beta13,gamma13,D),D=0..Q)+Cr*int((D-Q)*f1(alpha13,beta13,gamma13,D) ,D=Q..infinity)+Ca*Q,Cs*int((val-D)*f1(alpha13,beta13,gamma13,D),D=0..val)+Cr*int((D-val)* f1(alpha13,beta13,gamma13,D),D=val..infinity)+Ca*val},Q =0..100,color=[blue,orange])')),
Button("TO LEAVE",'font' = Font("helvetica", italic, 9), Shutdown(['gamma13'])),
"RESULT", TextField['TF113']('width' = 30),"RESULT", TextField['TF223']('width' = 30,halign= center),
Button("det.sd1",'font' = Font("helvetica", italic, 11), Evaluate('TF113' ='evalf(sqrt (int((x-(int(x*f1(alpha13,beta13,gamma13,x),x=-infinity..infinity)))**2*(((f1(alpha13,beta13, gamma13,x)))),x=-infinity..infinity)))')),
Button("det.Q*",'font' = Font("helvetica", italic, 11), Evaluate('TF113' = 'evalf(solve(int(f1(alpha13,beta13,gamma13,x),x=-2000..Q)=(Cr-Ca)/(Cr+Cs),Q))')),
Button("DENSITY FUNC.",'font' = Font("helvetica", italic, 9), Evaluate('PL13' = 'plot({ f1(alpha13,beta13,gamma13,D)},D=alpha13..gamma13)'))],
["Order Q: ",Slider['val'](0..100, 40, 'showticks',filled=true,'majorticks'=50, 'minorticks'=10, 'snapticks'=false),
Button("mean",'font' = Font("helvetica", italic, 11), Evaluate('mean3' = 'evalf((alpha13+beta13+gamma13)/3)')),
Button("%error_Q)",'font' = Font("helvetica", italic, 11), Evaluate('TF223' = '100*abs(evalf((Cs*int( (TF113-D)*f1(alpha13,beta13,gamma13,D),D=0..TF113)+Cr*int((D-TF113)* f1(alpha13,beta13,gamma13,D),D=TF113..infinity)+Ca*TF113-(( Cs*int((val-D)*f1(alpha13,beta13,gamma13,D),D=0..val)+Cr*int((D-val)* f1(alpha13,beta13,gamma13,D),D=val..infinity)+Ca*val)))/(Cs*int( (val-D)*f1(alpha13,beta13,gamma13,D),D=0..val)+Cr*int((D-val)*f1(alpha13, beta13,gamma13,D),D=val..infinity)+Ca*val)))')),
Button("det.(cost)",'font' = Font("helvetica", italic, 11),
Evaluate('TF223' = ' evalf(Cs*int((TF113-D)*f1(alpha13,beta13,gamma13,D),D=0..TF113)+Cr*int((D-TF113)*f1(alpha13 ,beta13,gamma13,D),D=TF113..infinity)+Ca*TF113)'))]]),

Window['W5']('title'="EVALUATION DU PROFIT AVEC LOI NORMALE",
[
["TO TEST:"],["demand Mean", TextField['mean6']("200",halign=center),
(" unit price :", TextField['p6']("15")),
"unitcost", TextField['c6']("5"),
"Stand.dev1:", TextField['sd16']("3",halign=center)],
Plotter['PL10']( plot(undefined, Q = 170..250) ),
[Button("TEST",'background' = 'green', Evaluate('PL10' = 'display(plot({p6*int(D* fn(mean6,sd16,D),D=0..Q)-c6*Q+p6*Q*(1-Fn(mean6,sd16,Q)),
p6*int(D*fn(mean6,sd16,D),D=0..sld61)-c6*sld61+p6*sld61*(1-Fn(mean6,sd16,sld61))
},Q = 180..250,color=blue),plot(p6*int(D*fn(mean6,sd16,D),D=0..Q)-c6*Q+p6*Q*(1-Fn(mean6,
sd16,Q))+ sqrt( int(((p6*D-c6*Q)-(p6*int(D*fn(mean6,sd16,D),D=0..Q)-c6*Q+p*Q*(1-int(fn(mean6,sd16,D),
D=0..Q))))**2*fn(mean6,sd16,D),D=0..Q)+int(((p6*Q-c6*Q)-(p6*int(D*fn(mean6,sd16,D),D=0..Q)
-c6*Q+p6*Q*(1-int(fn(mean6,sd16,D),D=0..Q))))**2*fn(mean6,sd16,D),D=Q..infinity))
,Q = 180..250,color=orange),plot(p6*int(D*fn(mean6,sd16,D),D=0..Q)-c6*Q+p6*Q*
(1-Fn(mean6,sd16,Q))- sqrt( int(((p6*D-c6*Q)-(p6*int(D*fn(mean6,sd16,D),D=0..Q)-c6*Q+p6*Q*(1-int(fn(mean6,sd16,D),D=0..Q))))**2*fn(mean6,sd16,D),D=0..Q)+int(((p6*Q-c6*Q)-(p6*int(D*fn(mean6,sd16,D),D=0..Q)-c6*Q+p6*Q*(1-int(fn(mean6,sd16,D),D=0..Q))))**2*fn(mean6,sd16,D),D=Q..infinity)) ,Q = 180..250,color=orange))')) ,
[Button("To leave", Shutdown(['mean']))],
"RESULT", TextField['TF10']('width' = 20,halign=center),TextField['TF11']('width' = 30,halign=center),
Button("max with sd1", Evaluate('TF10' = 'evalf(p6*int(D*fn(mean6,sd16,D), D=0..TF10)-c6*TF10+p6*TF10*(1-Fn(mean6,sd16,TF10)))')),

Button("Q*", Evaluate('TF10' = 'evalf(mean6+sd16*stats[statevalf,icdf,normald](1-c6/p6))')),
Button("Delta_P",Evaluate('TF11'='100*evalf(
((p6*int(D*fn(mean6,sd16,D),D=0..TF10)-c6*TF10+p6*TF10*(1-Fn(mean6,sd16,TF10)))- (p6*int(D*fn(mean6,sd16,D),D=0..sld61)
-c6*sld61+p6*sld61*(1-Fn(mean6,sd16,sld61))))/(p6*int(D*fn(mean6,sd16,D),D=0..TF10)- c6*TF10+p6*TF10*(1-Fn(mean6,sd16,TF10)))

)'))],
["order_Q: ", Slider['sld61'](100..250, 200, 'showticks',filled=true, 'majorticks'=5, 'minorticks'=1, 'snapticks'=false)]]),

Window['W6']('title'="EVALUATION DE LA QUANTITE OPTIMALE AVEC LOI NORMALE",
[

["TO TEST ORDER QUANTITY Q*"],
["D.mean1", TextField['mean41']("200",halign=center),"D.mean2", TextField['mean42'] ("200",halign=center),
"Sigma1: ", Slider['sd41'](0..30, 5, 'showticks','background' = 'white', 'majorticks'=5, 'minorticks'=1, 'snapticks'=false),
"Sigma2: ", Slider['sd42'](0..30, 15, 'showticks','background' = 'white', 'majorticks'=5, 'minorticks'=1, 'snapticks'=false)],
[Plotter['PL51']( plot(undefined, k = 0..1) )],
[Button("TESTER",'background' = 'white', Evaluate('PL51' = '
display({
plot({mean41+sd41*stats[statevalf,icdf,normald](1-k),mean42+sd42*stats[statevalf,icdf, normald](1-k)},k = 0..1,Q=150..260,color=[blue,orange]),
plot(mean41+sd41*stats[statevalf,icdf,normald](1-k1),0..1,color=orange,style=point),
plot(mean42+sd42*stats[statevalf,icdf,normald](1-k1),0..1,color=black,style=point),
plot([k1,Q,Q=150..260],color=black,style=point)
})')),
Button("Quitter", Shutdown(['sd41']),'background' = 'white'),
" k*:",TextField['k1']("0.2",halign=center),
Button("dete.k*",'background' = 'white', Evaluate('k1' = 'solve(mean41+sd41*st ats[statevalf,icdf,normald](1-r)-mean42+sd41*stats[statevalf,icdf,normald](1-r)=0,r)
')),
Button("delta_Q=",'background' = 'white', Evaluate('ero' ='
100*(mean41+sd41*stats[statevalf,icdf,normald](1-k1)-mean42+sd42*stats[stateval f,icdf,normald](1-k1))/(mean41+sd41*stats[statevalf,icdf,normald](1-k1))')),
"",TextField['ero'](halign=center),
Button("dete.Q*",'background' = 'white', Evaluate('QQ' = 'mean42+sd42*stats[statevalf, icdf,normald](1-k1)')),"Q*:=",TextField['QQ'](halign=center)]]),
Window['W7']('title'="EVALUATION DU cout AVEC LA LOI NORMALE",
[

["TO TEST COSTS: "],["D.Mean1", TextField['mean51']("200",halign=center),
"D.Mean2", TextField['mean52']("200",halign=center)
,("storage cost:", TextField['sc5']("12",halign=center)),"break-up cost :", Text Field['buc5']("35",halign=center)
,"Unit cost", TextField['uc51']("5",halign=center),
"stand.dev.1:", TextField['sd51']("2",halign=center),"stand.dev.2:", TextField['sd52']("19",halign=center)],
Plotter['PL52']( plot(undefined, Q = 100..255) ),
[Button("TEST",'background' = 'white', Evaluate('PL52' = 'plot({
-sc5*int(D*exp( -((D-mean51)^2)/ (2*sd51^2) )/(sd51*sqrt(2*Pi)),D=0..Q)+buc5*int((D)*exp ( -((D-mean51)^2)/ (2*sd51^2) )/(sd51*sqrt(2*Pi)),D=Q..infinity)+sc5*Q*int(exp( -( (D-mean51)^2)/ (2*sd51^2) )/(sd51*sqrt(2*Pi)),D=-infinity..Q)-buc5*Q*(1-int(exp( - ((D-mean51)^2)/ (2*sd51^2) )/(sd51*sqrt(2*Pi)),D=-infinity..Q))+uc51*Q,
-sc5*int((D)*exp( -((D-mean52)^2)/ (2*sd52^2) )/(sd52*sqrt(2*Pi)),D=0..Q)+buc5*int((D)*exp( -((D-mean52)^2)/ (2*sd52^2) )/(sd52*sqrt(2*Pi)),D=Q..infinity)+sc5*Q*int(exp( -((D-mean52)^2) / (2*sd52^2) )/(sd52*sqrt(2*Pi)),D=-infinity..Q)-buc5*Q*(1-int(exp( -((D-mean52)^2)/ (2*sd52^2) )/(sd52*sqrt(2*Pi)),D=-infinity..Q))+uc51*Q},Q = 100..255)'
) ), Button("To leave", Shutdown(['sd41']),'background' = 'white'),
"RESULT", TextField['TF1']('width' = 30),
Button("determine Q* with sd1", Evaluate('TF51' = 'evalf(mean51+sd51*stats[stateva lf,icdf,normald](((buc5/sc5)-(uc51/sc5))/(1+(buc5/sc5))))'),'background' = 'white'),T extField['TF51']('width' = 30),
Button("determine Q* with sd2", Evaluate('TF1' = 'evalf(mean52+sd52*stats[s tatevalf,icdf,normald](((buc5/sc5)-(uc51/sc5))/(1+(buc5/sc5))))'),'background' = 'white')]]),
Action['A1'](RunWindow('W1'))
):
Maplets[Display](maplet);

Ajouter un commentaire

Vous utilisez un logiciel de type AdBlock, qui bloque le service de captchas publicitaires utilisé sur ce site. Pour pouvoir envoyer votre message, désactivez Adblock.

MOBILISONS NOUS POUR LE DEVELOPPEMENT DE SARGHINE EN AIDANT L'ASSOCIATION AMSIRAR.

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site