exo3 maple

restart:val:= m[K]=1000, m[G]=4000, r=10, g=9.81, K[M]=100, T[M]=1:
> eq1 := m[K]*diff(x[K](t),`$`(t,2)) = F[K](t)+S*sin(theta(t))
> eq2:=m[G]*diff(x[G](t),t$2)=-S*sin(theta(t)):
> eq3:=m[G]*diff(z[G](t),t$2)=m[G]*g-S*cos(theta(t)):
> eq4:=x[G](t)=x[K](t)+r*sin(theta(t)):
> eq5:=z[G](t)=r*cos(theta(t)):
> s1:=diff(eq4,t,t);
> s2:=diff(eq5,t,t);
> s3:=subs(s1,eq2);
s4:=subs(s2,eq3);
> s5:=S=solve(s4,S);
> tmp:=subs(s5,s3);
> tmp2:=expand(tmp/m[G]*cos(theta(t)));
> deq1:=simplify(lhs(tmp2)-rhs(tmp2))=0;
> tmp4:=algsubs(rhs(eq2)=lhs(eq2),eq1);
> deq2:=expand(subs(s1,tmp4));
> lindeq1:=subs(sin(theta(t))=theta(t),cos(theta(t))=1,diff(theta(t),t)^2=0,deq1);
> lindeq2:=subs(sin(theta(t))=theta(t),cos(theta(t))=1,diff(theta(t),t)^2=0,deq2);
> deq3 := T[M]*diff(F[K](t),t)+F[K](t) = K[M]*u
> sys:={lindeq1, lindeq2, deq3};
> sysval := subs(val,u = 10,sys); init := {x[K](0) = 2, D(x[K])(0) = 0, theta(0) = 0, D(theta)(0) = 0, F[K](0) = 0}
> sol:=dsolve(sysval union init,[x[K](t),theta(t),F[K](t)],type=numeric);
> plot(['op(2,sol(t)[2])'], t=0..30, axes=boxed,
> title=" Position as a function of Time", > labels=["Time [s]", "x [K]"]);
> plot(['op(2,sol(t)[3])'], t=0..30, axes=boxed, > title=" Speed as a function of Time", > labels=["Time [s]", "Speed [K]"]);
> plot(['op(2,sol(t)[4])'], t=0..30, axes=boxed, > title=" Angle as a function of Time", > labels=["Time [s]", "Theta "]);
> with(DEtools):with(linalg):
> syst:=convertsys(sys,init,[x[K](t), theta(t), F[K](t)],t,X,X_p);
> A:=genmatrix(map(rhs=0,syst[1]), [ X[1],X[2],X[3],X[4],X[5]], 'inhom');
> b:=map(x->-1*x/u,inhom);
> Q:=concat(b, multiply(A,b), multiply(A^2,b), > multiply(A^3,b), multiply(A^4,b));
> det(Q);
> pole:=eigenvalues(A);
> pole:=subs(val,[pole]);
> readlib(polar):
> plot(map([Re,Im],pole),-2..0,-2.5..2.5,style=point,symbol=circle);
> G:=s->K/(1+2*d*T*s+T^2*s^2):
> h:=t->K-K/sqrt(1-d^2)*exp(-d*t/T)*sin(sqrt(1-d^2)*t/T):
> he:=t->K-K/sqrt(1-d^2)*exp(-d*t/T):
> abs(he-K)=K/sqrt(1-d^2)*exp(-d*t/T):
> r1:=K*2/100=K/sqrt(1-d^2)*exp(-d*t/T):
> r2:=solve(subs(d=0.7,t=25,r1),{T});
> G_:=subs(d=0.7,t=25,r2,G(s));
> p:=(s+1)^3*simplify(denom(G_)/lcoeff(denom(G_)));
> plot(map([Re, Im],[fsolve(p=0,s,complex)]),-2 .. 0,-1 .. 1,style = point,symbol = circle);
> Q_:=inverse(Q);
> Q_5:=row(Q_,5);
> R:=scalarmul(Q_5,coeff(p,s,0)):
> for i from 1 to 5 do
> R:=matadd(R,multiply(Q_5,A^i),1,coeff(p,s,i)):
> od: i:='i':
> R:=subs(val,evalm(R));
> TMP:=array(1..5,1..5,[[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[b[5]*R[i]$i=1..5]]);
> s[1]:=1/multiply(multiply([1,0,0,0,0],inverse(matadd(TMP,A,1,-1))),b);
> X := vector([x[1](t), x[2](t), x[3](t), x[4](t), x[5](t)])
> Xp:=vector([diff(x[1](t),t),diff(x[2](t),t),diff(x[3](t),t),diff(x[4](t),t),diff(x[5](t),t)]):
> R:=convert(evalm(R),vector);
> r2:=scalarmul(b,innerprod(R,X));
> SYS:=geneqns(A,X,matadd(matadd(Xp,scalarmul(b,s[1]*w),1,-1),r2,1,1));
> SYS:=simplify(subs(val, w=10, SYS));
> INIT:={x[1](0)=2,x[2](0)=0,x[3](0)=0,x[4](0)=0,x[5](0)=0}:
> sol:=dsolve(SYS union INIT,
> [x[1](t),x[2](t),x[3](t),x[4](t),x[5](t)],type=numeric);
> plot(['op(2,sol(t)[2])'], t=0..30, axes=boxed,
> title=" Position as a function of Time",
> labels=["Time [s]", "Position [K]"]);
> plot(['op(2,sol(t)[3])'], t=0..30, axes=boxed,
> title=" Speed as a function of Time",
> labels=["Time [s]", "Speed [K]"]);
> plot(['op(2,sol(t)[4])'], t=0..30, axes=BOXED,
> title=" Angle as a function of Time",
> labels=["Time [s]", "Theta"]);
MOBILISONS NOUS POUR LE DEVELOPPEMENT DE SARGHINE EN AIDANT L'ASSOCIATION AMSIRAR.

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site